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1. INTRODUCTION

Fatigue analysis of vibrating structures subject to random excitations due to earthquakes,
wind loadings, or ocean waves is an important subject [1}4]. When the excitation level is
high, the non-linear behavior of the structural system has signi"cant e!ect on the fatigue
damage. However, when the system is non-linear, the fatigue analysis becomes very
involved [5}7]. In an earlier study, we have developed a computationally practical method
for predicting the fatigue life of non-linear structures under random excitations [7]. The
method consists of an application of equivalent linearization combined with Monte Carlo
simulations in a decoupled linear modal space, and can e$ciently generate time histories of
the stresses of the structure for the fatigue calculation. In that paper, the maximum stress of
a plate in one particular direction was used in the fatigue calculation, although the plate was
clearly in multi-axial stress state. Recently, the well-known von Mises stress has been used
to estimate the fatigue damage of structures in the multi-axial stress state [8}12]. The work
reported in these papers did not attack the nonlinear analysis of structures. In this paper, we
shall extend the method developed in reference [7] to study the fatigue damages in
non-linear structures by using the equivalent von Mises stress proposed in [9}12].

We shall use a non-linear rectangular von KaH rmaH n plate to demonstrate the analysis
[13}17]. In the fatigue study, we can use the linear accumulative damage theory in
conjunction with the S}N curve of the material [1, 18, 19]. Since the plate considered here
has multiple resonant modes, the response will be broadband. It is well known that the
Rain-Flow cycle counting scheme is well suited to a broadband process [2, 18, 20].
The present approach carries out the stress analysis in the time domain, and then applies the
Rain-Flow scheme to count stress cycles. This fatigue estimate has to be done in the time
domain because the Rain-Flow scheme is di$cult to incorporate in a probabilistic
formulation. The method of equivalent linearization is applied to solve for the response of
the non-linear plate [6, 21}23]. The equivalent linearization method implies that the modal
responses of the structure are Gaussian. We have shown that the estimated fatigue life of
non-linear structures by the equivalent linearization method is in excellent agreement with
the result obtained by direct numerical simulations [7, 24].

The remainder of the paper is organized as follows. In section 2, we present the method of
equivalent linearization for calculating stresses of the non-linear plate. In section 3, we
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discuss the fatigue estimate by applying the classical fatigue theory along with the
Rain-Flow cycle counting scheme to an equivalent von Mises stress of the plate.

2. EQUIVALENT LINEARIZATION OF NON-LINEAR PLATES

The present study uses the von KaH rmaH n plate theory [15]. Besides the typical
assumptions of this theory, we point out that the in-plane inertia of the plate is neglected.
After many steps of derivations, we arrive at a set of non-linear modal equations for the
de#ection of the plate [7]:
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The spatial functions of x and y are chosen such that the geometrical boundary conditions
of the plate are satis"ed.

Since the probability distribution of the non-linear response of the plate is di$cult to
obtain, a su$ciently long time history of the response under random excitations is needed
to estimate the fatigue life. Due to the triple summation of the non-linear term in
equation (1), it is time-consuming to solve for the response in the time domain by using full
numerical simulation methods when the number of terms N is large. The numerical e!ort in
evaluating equation (1) for one time step is proportional to N4.

Consider a linear system equivalent to equation (1),
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where k
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(I, J) is an equivalent linear sti!ness matrix and the error e"Me

I
(=)N is de"ned by

e
I
(=)"!

N
+

J/1

k
e
(I, J)=

J
#

N
+
J/1

k
W

(I, J)=
J
#

N
+

J/1

N
+

K/1

N
+

L/1

k
N
(I, J, K, ¸)=

J
=

K
=

L
.

(6)

The elements of k
e
(I, J) are chosen so as to minimize the steady state mean square value

E[eTe] where E[)] denotes the expected value. This will lead to an approximate solution to
equation (1) in which the numerical e!ort for one time step is proportional to N2. This
represents substantial computational savings and makes it practical to include a large
number of terms.

Since=G
0

is Gaussian, the solution for=
I
of the equivalent linear system is known to be

jointly Gaussian and all the odd order steady state moments of=
I
are zero. By using this



LETTERS TO THE EDITOR 949
property, we obtain an expression for the equivalent linear sti!ness as
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We obtain a set of uncoupled ordinary di!erential equations,
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The stress components of the plate are given by
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where;
I
3 and <

I
3 are the modal coe$cients of the in-plane displacements, which are related

to the modal coe$cients of the de#ection [7]. Note that the stress of the plate is biaxial.

3. FATIGUE ESTIMATES

The S}N curves as a material property are often obtained under uniaxial stress
conditions. It is quite natural to use the maximum stress in a particular direction of the plate
to calculate the fatigue damage, as has been done in a previous study [7]. When the
structure is in the biaxial or multiaxial stress state, we should consider other stress variables
for calculating the fatigue damage.

To this end, we can look into the yield criterion in plasticity [25]. There are two criteria
de"ned by two well-known stresses: Tresca and von Mises. The Tresca criterion is based on
the assumption that the material failure occurs in pure shear, and the Tresca stress is the
maximum shear stress. While there is less evidence of the correlation of the fatigue damage
to the Tresca stress, there is evidence that the von Mises stress correlates well to the fatigue
damage [10]. This may explain the recent interest in using the von Mises stress in the fatigue
analysis of structures in the multiaxial stress state [9}12]. In the following, we shall adopt
the equivalent von Mises stress developed by Preumont in the papers cited here for the
fatigue damage estimate. We would like to point out also that the present study can be
readily extended to the Tresca stress should there be materials found to obey the Tresca
criterion in the fatigue process.

For the plate, the stress is biaxial. Let us de"ne a stress vector as p"(p
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From equation (15), we can derive the power spectral density (PSD) function of the
equivalent von Mises stress as

U
c
(u)"TraceM[Q][Upp(u)]N (16)

where Upp(u) is the PSD matrix of the stress vector p. In the steady state, the expansion
coe$cients=

I
for the de#ection of the plate are assumed to be independently Gaussian.

With this knowledge and the stress expressions (14), we can either numerically or
analytically obtain Upp (u). Once U

c
(u) is determined, we can apply the stochastic

simulation algorithm [26] to generate a large number of time histories of the von Mises
stress. Note here that the von Mises stress generated in this manner is cyclic, and can be
combined with the Rain-Flow cycle counting scheme to calculate the fatigue damage based
on the classical linear theory for high cycle fatigue [9}12].

The material fatigue property is characterized by the S}N curve de"ned as [1, 18, 19]

N"c/Sb, (17)

where S is the stress amplitude, N is the number of cycles to failure. According to the
Palmgren}Miner linear damage accumulation rule, the total damage D is obtained as the
sum of accumulative damages caused by each cyclic damage event DD

i
: D"+

i
DD

i
. Failure

is said to occur when D"1. The fatigue life is then the amount of time it takes for this to
happen. Based on the S}N curve, the damage increment due to one cycle is DD

i
"DS

i
Db/c,

where S
i
is the stress amplitude of the ith damage event determined by the cycle counting

scheme.
Since the bandwidth of the response of the multi-mode non-linear plate is wide, we have

to use the Rain-Flow cycle counting scheme for identifying damage events [2, 18, 20]. Once
the fatigue damage is accumulated for a su$ciently long time q, the average damage rate is
given by

D"D/q, (18)

and the simulated average fatigue life is approximately determined as

¹"1/D. (19)

In general, DD
i
and ¹ are random variables with unknown probability distributions.

It should be noted that the iteration process for determining the equivalent linear system
takes a very small fraction of the total computation time. Once the equivalent linear system
is determined, the computational e!ort for simulating, the time series of the equivalent von
Mises stress is independent of the type of non-linearity. The computational e!ort is thus
signi"cantly reduced as compared to the direct simulation of the full non-linear system.

4. CONCLUSIONS

This paper presents a method for calculating the fatigue damages of a non-linear plate
subject to random excitations. The equivalent linearization is used for obtaining the
response of the plate. An equivalent von Mises stress can be used in connection with the
Rain-Flow cycle counting scheme to estimate fatigue damages based on the classical linear
accumulative damage theory and the S}N curve of the material. A large number of time
histories of the von Mises stress can be generated e$ciently by making use of its PSD
function.
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